Random insertion of split-cans of the fluorescent protein venus into Shaker channels yields voltage sensitive probes with improved membrane localization in mammalian cells

Lei Jin, Bradley Baker, Robbie Mealer, Lawrence Cohen, Vincent Pieribone, Arnd Pralle, Thomas Hughes

Department of Physiology, Yale University, New Haven, CT, USA
Department of Cell Biology & Neuroscience, Montana State University, Bozeman, MT, USA
John B. Pierce Laboratory, New Haven, CT, USA
Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA
Department of Physics, University at Buffalo, SUNY, Buffalo, NY, USA

Abstract
FlaSh-YFP, a fluorescent protein (FP) voltage sensor that is a fusion of the Shaker potassium channel with yellow fluorescent protein (YFP), is primarily expressed in the endoplasmic reticulum (ER) of mammalian cells, possibly due to misfolded monomers. In an effort to improve plasma membrane expression, the FP was split into two non-fluorescent halves. Each half was randomly inserted into Shaker monomers via a transposon reaction. Shaker subunits containing the 5' half were co-expressed with Shaker subunits containing the 3' half. Tetramerization of Shaker subunits is required for re-conjugation of the FP. The misfolded monomers trapped in ER are unlikely to tetramerize and reconstitute the beta-can structure, and thus intracellular fluorescence might be reduced. This split-can transposon approach yielded 56 fluorescent probes, 30 (54%) of which were expressed at the plasma membrane and were capable of optically reporting changes in membrane potential. The largest signal from these novel FP-sensors was a −1.4% in ΔF/F for a 100 mV depolarization, with on time constants of about 15 ms and off time constants of about 200 ms. This split-can transposon approach has the potential to improve other multimeric probes.

© 2011 Elsevier B.V. All rights reserved.

1. Introduction
Imaging of neuronal activity can provide detailed spatial information about changes in calcium concentration (Brown et al., 1975), pH (Tolkovsky and Richards, 1987), hemodynamics (Grinvald et al., 1986; Kwong et al., 1992) and membrane potential (Davila et al., 1973). Voltage imaging can simultaneously record activity in many locations of a single cell (Canepari et al., 2008; Grinvald et al., 1981), the activities of multiple cells (Salzberg et al., 1977; Zecevic et al., 1989) or population signals from many brain regions (Grinvald et al., 1982; Zochowski and Cohen, 2005).

There are two types of voltage sensitive optical probes, organic dyes and genetically-encoded probes (FP voltage sensors). While the organic dyes are widely used with their characteristics of high sensitivity, fast dynamics (Loew et al., 1985) and linear response (Gupta et al., 1981), these organic dyes lack staining specificity. Genetically-encoded probes are not as well developed, but they are able to achieve cell type specificity because their expression can be determined by a cell type specific promoter.

Thus far FP voltage sensors have been conjugates of membrane resident voltage sensors and fluorescent proteins (FPs). The voltage sensors have been either voltage-gated ion channels or voltage-sensitive phosphatases (Baker et al., 2008). The conformation change of the voltage sensor during a membrane voltage change either directly changes the FP conformation or influences the environment surrounding the chromophore, resulting in a fluorescence change.

It is essential for the FP voltage sensor to be expressed in the plasma membrane where the probe can sense the voltage change. Ideally, all of the fluorescence would come from membrane bound sensor. Intense intracellular fluorescence will increase the non-responsive background intensity and thereby decrease the voltage sensitivity (ΔF/F) and signal-to-noise ratio. Unfortunately, very little of the first generation FP voltage sensors reached the plasma membrane in mammalian cells even though they expressed well in Xenopus oocytes. The first FP voltage sensor, FlaSh (Siegel and Isacoff, 1997), did not work well in mammalian systems due to poor membrane targeting and high background fluorescence (Carter and...
Shieh, 2010). Three other first generation FP voltage sensors, Flare (Baker et al., 2007), SPARC (Ataka and Pieribone, 2002), and VSPFP-1 (Sakai et al., 2001) all had poor plasma membrane expression but strong intracellular fluorescence in Human Embryonic Kidney (HEK) 293 cells and in primary cultured hippocampal neurons (Baker et al., 2007). The perinuclear expression pattern of the three probes suggested that they were retained in the ER or Golgi apparatus. No voltage sensitive signal was recorded from these three constructs in mammalian cells (Baker et al., 2007). The second and third generation voltage sensitive probes contain the voltage sensitive phosphatase from Ciona intestinalis (Ci-VSP), instead of ion channels. These probes are well localized to the plasma membrane in mammalian cells (Akemann et al., 2010; Tsutsumi et al., 2008). We tried to find a way to improve membrane expression of probes using ion channels in mammalian cells, so that we would not be limited to a single type of voltage sensor for probe design.

Several different FPs have been used to replace wtGFP in FlaSh, including YFP (Guerrero et al., 2002). We attempted to reduce the intracellular fluorescence of FlaSh-YFP by rendering misfolded protein nonfluorescent. FlaSh-YFP, a derivative of the Drosophila Shaker potassium channel, is a tetramer that needs to assemble to leave the ER (Nagaya and Papazian, 1997; Reddy and Corley, 1998; Robinson and Deutsch, 2005). Our strategy was to use complementary halves of a fluorescent protein (also called split-cans) and insert the two halves into separate monomers which can fluoresce only after tetramerization. When the fluorescent protein (FP) is divided properly into two fragments, neither half fluoresces (Ozawa, 2006; Wilson et al., 2004). However, the two halves can give rise to a functional chromophore when brought into proper proximity. This split-can strategy has been used to report protein–protein interactions (Jackrel et al., 2010; Ozawa, 2009) and calcium sensitive protein conjugation (Lindman et al., 2009).

For these experiments the YFP of FlaSh-YFP was replaced with Venus, which has mutations to improve its maturation and brightness (Nagai et al., 2002). Venus was split into two non-fluorescent half-cans, which were fused individually with inactivated Shaker W434F α-subunit monomers. Two subunits containing the different halves of Venus were co-expressed in mammalian cells with the hope that the tetramerization of the correctly folded monomers would induce the assembly of the split-can halves. This split-can strategy offers two possible improvements. Misfolded monomers would be unlikely to tetramerize and thereby remain non-fluorescent. Second, because each subunit no longer needs to accommodate a complete beta-can structure, correct folding may be more likely.

Because FlaSh-YFP’s original YFP insertion site in the Shaker potassium channel downstream of the S6 domain may not be the optimal position to allow the two half-cans to get close enough to assemble, potential insertion sites were explored for each of the two half-cans using transposon reactions to pseudo-randomly insert the venus halves at various locations in the channel protein (Mealer et al., 2008).

Of the 120 combinations that we tested, 44 combinations had fluorescence on the plasma membrane, and 30 of these had detectable voltage sensitivity. The largest sensitivity was a –1.4% change in ΔF/F for a 100 mV depolarization. Many of the probes had a relatively fast on time constants of about 15 ms, but much slower off time constants of about 200 ms.

2. Materials and methods

2.1. Split-can venus

The full length venus was split between Glutamine158 and Lysine159 (Fig. 1A) (Mealer et al., 2006). The front half contains most of the can structure and the chromophore, and the rear half contains four β-sheets of the can structure (Fig. 1B).

2.2. Transposon reaction

To randomly insert fluorescent protein fragments into the sequence encoding the Shaker subunit, we created a new synthetic Tn5 transposon (Pralle et al., 2006). The transposon carries two mosaic end (ME) sequences required for the transposition, a complete coding sequence for venus, a Kanamycin resistance and a C terminal fragment of venus (Fig. 2A). The transposase inserted this transposon into various sites of a vector encoding the Shaker W434F mutant sequence (Fig. 2B). The initial products then were selected by detecting fluorescence in transiently transfected HEK293 cells to identify the correct insertions, which are in the coding region, in frame, and in the correct orientation (Fig. 2C). AsiS1 and Asc1 restriction sites are positioned within the transposon. Restriction digestions with either AsiS1 or Asc1 and ligations produced full-length Shaker subunits with either N-terminal or C-terminal segments of venus at the original transposon insertion site (Fig. 2D).

2.3. Transfection

HEK293 cells or NIE115 neuroblastoma cells were plated on coverslips coated with poly-l-lysine in 24-well plates. The cells were co-transfected with two fusion protein constructs (0.4 μg each), one containing the front half and the other containing the rear half of venus, using 2 μl (of lipofectamine 2000 (Invitrogen). All combinations listed in Table 2 were tested in HEK293 cells. Only a portion of the combinations was tested in NIE115 cells.

2.4. Whole cell voltage clamp

The voltage sensitivity was tested 1 or 2 days after the transfection. The cells were perfused with a bathing solution (NaCl 150 mM, KCl 4 mM, CaCl₂ 2 mM, MgCl₂ 1 mM, D-glucose 5 mM and HEPES 5 mM, pH 7.4) at 27–30°C. The temperature was maintained by an in-line heater and a stage bath heater SH-27B (Warner Instruments, Hamden, CT). Whole cell voltage clamping was performed using a
A Transposon

B Transposon reaction

C Selection

D Create constructs with only N- or C-Venus insertion

PC-50SB amplifier (Warner Instruments). The pipette solution contained K-aspartate 120 mM, NaCl 4 mM, MgCl₂ 4 mM, CaCl₂ 1 mM, EGTA 10 mM, Na₂-ATP 3 mM and HEPES 5 mM, pH 7.2. Cells were held at −70 mV at rest, and the membrane potential was changed to test the probes’ voltage sensitivity.

2.5. Imaging

2.5.1. Wide field imaging

The voltage clamped cells were imaged with a water immersion objective, Nikon Fluor 60X/1.00 W, on a Nikon Eclipse E6000FN microscope (Nikon, Melville, NY) with a 150 W Xenon arc lamp (OptiQuip, Highland Mills, NY). The filter cube contained an excitation filter HQ480/30X (Chroma, Bellows Falls, VT), a dichroic mirror 5050D0X (Chroma) and an emission filter HQ520LP (Chroma). The image was demagnified by an Optem® zoom system A45699 (Qtopiq LNOS, Inc, Fairport, NY) and projected onto the 80 × 80 pixel chip of a NeuroCCD-SM camera controlled by NeuroPlex software (RedShirtImaging, Decatur, GA). The images were recorded at a frame rate of 1 kfps. The measured fluorescence is the average intensity of all the pixels receiving light from the patched cell. Averaging 10–64 trials was used to improve the signal to noise ratio. We applied low pass temporal filters using NeuroPlex for the results presented in Figs. 4 and 5. A frame subtraction image was used to represent the signal polarity during the depolarization (Fig. 5B). It was calculated by subtracting the average pixel values of 20 frames recorded at the resting potential from those of 50 frames during the depolarization.

2.5.2. Confocal imaging

Confocal images were obtained using an Olympus LUMFL 60X/1.10 W objective and an Olympus Fluoview FV1000 LSM confocal microscope. The light source was a 515 nm argon ion laser. A DM405-440/515 dichroic mirror and a BA535-565 emission filter (Olympus, Center Valley, PA) were used to isolate the fluorescence emission.

3. Results

Eight fusion proteins with the front half split-can and fifteen fusion proteins with the rear half split-can were created. The constructs and their insertion sites are listed in Table 1. The split-can half is inserted after the amino acid listed under the construct’s name.

The insertion positions in the Shaker channel are illustrated in Fig. 3. HEK293 cells were co-transfected with all of the combinations shown. A portion of these combinations was co-transfected into NIE115 cells.

We imaged cells transfected with split-can combinations to observe the location of fluorescence. According to our non-quantitative visual observation, we categorized the fluorescence of the split-can combinations into four types:

Type 1: Fluorescence mainly in the plasma membrane: The majority of the transfected cell population showed fluorescence mainly in the plasma membrane. Occasional cells with strong expression had intracellular expression (Fig. 4A and B). Twenty-nine combinations were in this category (Fig. 3, red or black circles with empty centers; red, with voltage sensitive fluorescence; black, no voltage sensitivity).

<table>
<thead>
<tr>
<th>Insertion</th>
<th>A₁₁</th>
<th>E₁₁</th>
<th>G₁₁</th>
<th>A₈₁</th>
<th>H₆₁</th>
<th>B₆₁</th>
<th>E₃₁</th>
<th>G₂₁</th>
</tr>
</thead>
<tbody>
<tr>
<td>61G</td>
<td>155G</td>
<td>391A</td>
<td>516H</td>
<td>568S</td>
<td>574I</td>
<td>642M</td>
<td>648A</td>
<td></td>
</tr>
<tr>
<td>16H</td>
<td>70A</td>
<td>78G</td>
<td>85H</td>
<td>195G</td>
<td>492E</td>
<td>516H</td>
<td>518K</td>
<td></td>
</tr>
<tr>
<td>533D</td>
<td>568S</td>
<td>574I</td>
<td>580H</td>
<td>584Q</td>
<td>642M</td>
<td>649A</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 1

(A) Front half insertion site (constructs names with subscript f); (B) Rear half insertion site (constructs names with subscript r). The split-can half is inserted after the amino acid listed under the construct’s name.
Type 2: Fluorescence in both the plasma membrane and the cytosol: The majority of the transfected cell population had fluorescence in both the plasma membrane and the cytoplasm (Fig. 4C). Fifteen combinations were in this category (Fig. 3, red or black circles with yellow centers; red, with voltage sensitive fluorescence; black, no voltage sensitivity).

Type 3: Intracellular fluorescence: There was no obvious plasma membrane fluorescence distinguishable from the intracellular expression. The intracellular expression either appeared uniform throughout the cytoplasm or as intracellular aggregates (Fig. 4D). Twelve combinations were in this category; none had voltage sensitive fluorescence (Fig. 3, solid yellow circles).

Type 4: No fluorescence. Sixty-four combinations were in this category (Fig. 3, solid grey circles).

To test the split-can combinations' voltage sensitivity, transfected cells exhibiting fluorescence were simultaneously voltage clamped and imaged at a frame rate of 1 kfps. $\Delta F/F$ and Tau-on resulting from a 100 mV depolarization are summarized in Table 2 ($n \geq 3$) for all the voltage sensitive combinations. The $\Delta F/F$ and Tau were calculated from the raw data without low pass filtering. Twenty-nine combinations had an intensity decrease, and one combination had an intensity increase during depolarization in HEK293 cells. No optical signal was found during hyperpolarizing steps. For example, Fig. 6B shows that the combination $A1_F7r$ changes its fluorescence in response to the 100 mV depolarization but not to the 70 mV hyperpolarization. None of the combinations with only intracellular fluorescence had detectable voltage sensitivity. Fig. 3 summarizes the split-can insertion sites of all the combinations and their fluorescence location and voltage sensitivity. Voltage

Fig. 3. Insertion sites of the venus split-cans in the Shaker channel, location of fluorescence and voltage sensitivity after co-transfection. Top: insertion sites of the split-can front half. Left: insertion sites of the split-can rear half. The circles at the crossings represent the combinations of the two split-can halves. The colors of the circle surround and center indicate the fluorescence location and voltage-sensitivity. Red circle: fluorescence in plasma membrane, with voltage sensitivity; black circle: fluorescence in plasma membrane, without voltage sensitivity; red circle with yellow center: fluorescence in both cytosol and plasma membrane, with voltage sensitivity; black circle with yellow center: fluorescence in both cytosol and plasma membrane, without voltage sensitivity; solid yellow circle: cytosol fluorescence, without voltage sensitivity; solid grey circle: no fluorescence.

<table>
<thead>
<tr>
<th>Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>Fluorescence in both plasma membrane and cytosol.</td>
</tr>
<tr>
<td>3</td>
<td>Intracellular fluorescence.</td>
</tr>
<tr>
<td>4</td>
<td>No fluorescence.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>O</td>
<td>Fluorescence in plasma membrane, with voltage sensitivity.</td>
</tr>
<tr>
<td>✔</td>
<td>Fluorescence in plasma membrane, no voltage sensitivity.</td>
</tr>
<tr>
<td>☢</td>
<td>Fluorescence in both cytosol and plasma membrane, with voltage sensitivity.</td>
</tr>
<tr>
<td>✉</td>
<td>Fluorescence in both cytosol and plasma membrane, no voltage sensitivity.</td>
</tr>
<tr>
<td>☠</td>
<td>Cytosol fluorescence, no voltage sensitivity.</td>
</tr>
<tr>
<td>☿</td>
<td>No fluorescence</td>
</tr>
</tbody>
</table>

Table 2. Voltage sensitivity of the split-can combinations

<table>
<thead>
<tr>
<th>Combination</th>
<th>$\Delta F/F$</th>
<th>Tau-on</th>
</tr>
</thead>
<tbody>
<tr>
<td>$A1_F7r$</td>
<td>0.1</td>
<td>50</td>
</tr>
<tr>
<td>$B1_F7r$</td>
<td>0.05</td>
<td>70</td>
</tr>
<tr>
<td>$C1_F7r$</td>
<td>0.2</td>
<td>100</td>
</tr>
<tr>
<td>$D1_F7r$</td>
<td>0.0</td>
<td>0</td>
</tr>
<tr>
<td>$E1_F7r$</td>
<td>0.5</td>
<td>80</td>
</tr>
<tr>
<td>$F1_F7r$</td>
<td>0.15</td>
<td>60</td>
</tr>
</tbody>
</table>

Fig. 4. Diagram showing the insertion sites of the venus split-cans in the Shaker channel.
sensitive combinations have split-can halves inserted in N-terminal and/or C-terminal intracellular segments of the Shaker channel. None of the combinations containing G1f, whose insertion site is between S4 and S5, showed membrane fluorescence and voltage sensitivity.

The combination A1fB5r gave the largest signal. Fig. 5A shows examples of A1fB5r’s optical signals from a HEK293 cell. The signal size was −1.7% and −1.9% for the 50 mV and 100 mV depolarization steps respectively. Although the signal sizes are similar for the two depolarization steps, the on time constant of the 100 mV depolarization, 10 ms, is faster than 40 ms, the time constant for the 50 mV depolarization. The off time constants for the two depolarization steps are both about 200 ms. Averaged ΔF/F values and on time constants as a function of membrane potential in

Fig. 4. Examples of the location of fluorescence expression in images taken with a confocal microscope: (A) Type 1: A1fB5r in HEK294 cells, mainly membrane fluorescence; intracellular fluorescence in over expressing cells. (B) Type 1: A1fF7r in NIE115 cells, mainly membrane expression. (C) Type 2: A1fA1r in HEK293 cells, both membrane and intracellular fluorescence. (D) Type 3: E7fF7r in HEK293 cells, mainly intracellular fluorescence. The white line in each panel is the scale bar of 10 μm. Bottom inserts: line scan data from individual cells demonstrate the relative intensity between the plasma membrane and the cytosol. The x-axis is pixel number. The y-axis is fluorescence intensity (arbitrary units).
HEK293 cells are presented in Fig. 5C and D. The ΔF/ΔF vs. V_m data was fit with the curve by the Boltzmann equation using Origin 8 (Fig. 5C):

\[
\frac{\Delta F}{\Delta F} = \frac{1}{1 + \exp(V - V_{\text{half}})/k} + A_2
\]

where constants define the maximum and minimum values: \(A_1 = -0.015\); \(A_2 = -1.38\); the midpoint of the curve: \(V_{\text{half}} = -26.69\); and the slope factor: \(k = 6.90\). This probe operates over the voltage range of \(-50\) to \(0\) mV. Although the voltage sensitivity curve reaches its plateau around \(0\) mV, the on time constant continues to decrease up to \(+30\) mV (Fig. 5D). The average off-time constant of \(A_1B_5\) in HEK293 cells following a \(100\) mV depolarization step was \(150 \pm 10\) ms \((n = 12)\). Most other voltage sensitive combinations were only tested with \(100\) mV depolarizations; they have smaller fractional changes (Table 2) and signal-to-noise ratios (but similar on time constants).

The \(A_1B_5\)’s fluorescence recovered back to the baseline in some HEK293 cells (Fig. 5A), but not completely in others (Fig. 5B). This slow recovery is shared by many of the voltage sensitive combinations. In some cases, the fluorescence did not respond to the repolarization (Fig. 6B).

Table 2

ΔF/ΔF and Tau-on of the voltage sensitive combinations in HEK293 cells. The signal sizes and the Tau-on values were measured from the response to 100 mV depolarization steps from a resting potential of \(-70\) mV.

<table>
<thead>
<tr>
<th></th>
<th>A1f</th>
<th>E7f</th>
<th>A8f</th>
<th>H6f</th>
<th>B6f</th>
<th>E3f</th>
<th>G2f</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>%</td>
<td>%</td>
<td>%</td>
<td>%</td>
<td>%</td>
<td>%</td>
<td>%</td>
</tr>
<tr>
<td>C3r</td>
<td>0.19</td>
<td>22</td>
<td>0.12</td>
<td>17</td>
<td>0.12</td>
<td>17</td>
<td>0.28</td>
</tr>
<tr>
<td>A1r</td>
<td>0.9</td>
<td>24</td>
<td>0.14</td>
<td>8</td>
<td>0.13</td>
<td>18</td>
<td>0.07</td>
</tr>
<tr>
<td>B5r</td>
<td>0.15</td>
<td>17</td>
<td>0.07</td>
<td>25</td>
<td>0.04</td>
<td>17</td>
<td>0.08</td>
</tr>
<tr>
<td>B6r</td>
<td>0.16</td>
<td>27</td>
<td>0.10</td>
<td>33</td>
<td>0.04</td>
<td>17</td>
<td>0.08</td>
</tr>
<tr>
<td>G4r</td>
<td>0.13</td>
<td>16</td>
<td>0.15</td>
<td>16</td>
<td>0.17</td>
<td>16</td>
<td>0.12</td>
</tr>
</tbody>
</table>

![Responses of A1,B5 in HEK293 cells](image)

Fig. 5. \(A_1,B_5\)’s fluorescence signal in response to depolarization in HEK293 cells: (A) An example of \(A_1,B_5\)’s fluorescence changes upon depolarizations of \(50\) mV and \(100\) mV, and their recovery after the repolarization. The optical traces were smoothed with five passes of a binomial low pass filter. (B) An example of incomplete fluorescent recovery after the repolarization. The optical trace was smoothed with a \(60\) Hz Gaussian low pass filter. Ten trials were averaged for both A and B. (C) \(\Delta F/\Delta F\) of \(A_1,B_5\) versus membrane potential. The numbers of cells used for each data point: \(-50\) mV: \(10\); \(-40\) mV: \(7\); \(-30\) mV: \(4\); \(-20\) mV: \(5\); \(-10\) mV: \(16\); \(30\) mV: \(12\). (D) On time constant of \(A_1,B_5\) versus holding potentials from \(-40\) mV to \(30\) mV. The numbers of cells used for each data point: \(-40\) mV: \(5\); \(-30\) mV: \(3\); \(-20\) mV: \(5\); \(-10\) mV: \(16\); \(30\) mV: \(12\).
4. Discussion

Our goal was to improve plasma membrane expression and voltage sensitivity of FlAsH-YFP in mammalian cell lines. This goal was achieved using the split-cans and the transposon reaction. With this strategy, thirty novel voltage sensitive probes were created, all of which had significant membrane expression. However, the split-can method was not perfect in that 15 combinations had both membrane and intracellular fluorescence and another 12 combinations had only intracellular fluorescence. Possible explanations for the intracellular fluorescence are that these monomers are correctly folded and tetramerized, but they are retained intracellularly either as intracellular pools (Clay and Kuzirian, 2002), or that the cells lack sufficient trafficking partners. However, these hypotheses are unlikely because the 29 combinations with only plasma membrane fluorescence demonstrate that the HEK293 and NIE115 cell lines have the necessary trafficking partners and limited Shaker intracellular pools. Another explanation is an erroneous assumption of our split-can strategy. We assumed that the peptides are tetramerized after the completion of their translation and folding, and misfolded monomers will not tetramerize and the FP halves cannot combine. However, there is evidence that Shaker-type K channels are capable of tetramerizing via their N-terminal TI domain while the nascent peptides are still being translated and translocated in the ER (Lu et al., 2001). Therefore, if the peptide is misfolded downstream of the N-terminal TI domain, it is possible for misfolded monomers to be tetramerized and fluoresce.

We used the transposon reaction to insert the half-cans into the Shaker monomers at “random” locations. We hoped to find insertion sites that would bring the two half-cans close enough to reassemble and fluoresce in the tetramer. Among the 30 voltage sensitive combinations, the two with the largest fractional changes are A1B5 and A1F7. The insertion sites of A1 and F7 are in the N-terminal intracellular segment, upstream of the S1 transmembrane domain of Shaker, and that of B5 is in the C-terminal intracellular segment, downstream of the S6 transmembrane domain. Because S4 is recognized as the voltage sensor, insertion sites close to the S4 domain are natural choices for FPs to sense S4’s translocation. Thus far the published FP voltage sensors have their FPs inserted downstream to either S4 or S6 of the voltage sensors (Ataka and Pieribone, 2002; Sakai et al., 2001; Siegel and Isacoff, 1997; Tsutsui et al., 2008). This is the first report showing that a fluorescent protein inserted in the N terminal intracellular segment of a voltage sensor exhibits optical signals upon voltage changes. So this study opens a new exploration space for possible insertion sites for future probe design.

The voltage dependence of A1B5’s fluorescence change was fitted with a Boltzmann equation. The curve had the midpoint at about –25 mV and a slope factor k of 6.9. The fluorescence is sensitive to the voltage change in the range of –50 to 0 mV. Perozo et al. studied the wild-type Shaker channel’s characteristics in Xenopus oocytes. They compared the channel’s gating current and conductance’s voltage dependence after normalization (Perozo et al., 1992). The conductance curve’s midpoint is about –25 mV, which is more positive than that of the gating charge curve (–35 mV), and the conductance curve has a steeper slope than the gating charge curve. They also reported that the mutation W434F did not change the voltage dependence of the gating charge movement (Perozo et al., 1993). The ΔF/F–voltage curve in Fig. 5C, after normalization by the maximum ΔF/F value, overlaps with the conductance–voltage curve of the wild-type Shaker channel (Perozo et al., 1992). Thus

Fig. 6. A1F7, s fluorescence signals. (A) An example of A1F7, s fluorescence change for a 100 mV depolarization in a HEK293 cell. Ten trials were averaged. The optical trace was smoothed with a Gaussian low pass filter of 16 Hz. (B) A1F7, s fluorescence change in a NIE115 cell. The upper optical trace: signals from the central region of the cell. The lower optical trace: signals from the edge of the cell. The left image is the resting light intensity. The right image is the frame subtraction image indicating the signal polarity resulting from the depolarization. The grayscale bar is for the subtraction image (arbitrary units). The optical trace was smoothed with a Gaussian low pass filter of 83 Hz. 64 trials were averaged. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of the article.)
we speculate that the fluorescence change is a part of the
formation changes inducing the channel opening, but not the gating
charge movement. This speculation is different from that proposed
for the Flash fluorescence signal (Siegel and Isacoff, 1997). Com-
pared to A1β5, Flash operates over a narrower voltage range
(−53 to −27 mV) which matches its own gating charge displace-
ment. The different voltage dependence between Flash and A1β5,
may result from their different insertion sites. The GFP in Flash
is inserted downstream of S6 transmembrane domain in a single
subunit, while each venus in A1β5 is composed of halves linked
between two subunits at insertion sites, one upstream to S1 and
the other downstream of S6. The split-can FP could sense either the
formation change of a single subunit, and/or changes in the relative
angle and/or distance between two subunits in the tetramer.

All of the genetically encoded voltage sensitive probes reported
so far have slower kinetics compared with the fastest organic volt-
age sensitive dyes. Some organic voltage sensitive dyes respond
with time constants faster than 1 μs (Loew et al., 1985). These
differences result from the different mechanisms of voltage sen-
sitivity. We take di-8-ANEPPS as an example for voltage sensitive
dyes. The electric field influences its chromophore’s electron distri-
bution directly, and its spectra respond to the membrane voltage
change very rapidly. On the other hand, the genetically encoded
probes’ chromophores do not respond to the voltage change
directly, but to the environment change caused by the confor-
mation transition of the voltage sensor during gating, activation
or inactivation. The probe inherits some properties of the voltage
sensor, such as voltage sensitive dynamics and range. The slower
dynamics reflects the speed of the conformation transition of the
sensor and the indirect environment change of the chromophore.

The FP voltage sensors generated in this project all have rela-
tively fast on rates and slower off rates. Compared with Flash-YFP,
whose on-time constant is about 300 ms and off-time constant is
longer than 1 s in Xenopus oocytes (Guerrero et al., 2002), the split-
can constructs have improved dynamics, but their slow off-rate
would still limit the application of these FP voltage sensors in cer-
tain physiological studies. One of the second generation voltage
sensitive phosphatase based probes, VSFP2.1, has an on-time con-
stant of 20 ms and off-time constant of 80 ms for depolarization
steps of 90 mV in PC12 cells at 35 °C (Dimitrov et al., 2007). A1β5r
is as fast as VSFP2.1 on depolarization, but has slower recovery after
repolarization. In a few cases, the split-can’s fluorescence change
had no appreciable recovery hundreds of ms after the repolariza-
tion. As a result, we have not reported the Tau-off values of all
combinations.

The combination of A1F7r is unique in that it exhibited a fluores-
cence increase during depolarization in HEK293 cells. Furthermore,
in NIE115 cells, A1F7r had a fluorescence increase in the central
pixels but a fluorescence decrease in the pixels from the edge of
the cell. Because the confocal image indicates that A1F7r is mainly
expressed in the plasma membrane (Fig. 4B), we believe that the
center pixels recorded fluorescence signals from the top and bot-
tom plasma membrane. Compared to NIE115 cells, HEK293 cells
are smaller in size and flatter in geometry, which will result in rel-
atively reduced fluorescence from vertically oriented membrane.
This, together with the limited spatial resolution of the NeuroCCD
camera, may explain why we did not detect a decreasing edge signal
in HEK293 cells.

Although A1F7r’s uniquely spatially localized signals would be
problematic for monitoring membrane potential, it may provide
important clues for further biophysical studies on the response
mechanism of FP voltage sensors. A hypothesis involving chro-
mophore dipole rotation can explain the opposite signals in the
center and at the edge of A1F7r transfected NIE115 cells. We sug-
gest that at resting potential the chromophore’s dipole is nearly
perpendicular to the plasma membrane. The chromophore dipoles
on the side membrane are nearly perpendicular to the light path,
while those on the top and bottom membrane are nearly parallel to
the light path. Chromophores with dipoles more perpendicular
to the light path are better excited and emit stronger fluorescence.
If depolarization causes the dipoles to be less perpendicular to
the plasma membrane, the fluorescence from the top and bottom
membrane will increase, and that from the edge will decrease.

In summary, we used split-can and transposon technologies to
improve the localization and voltage sensitivity of Flash-YFP based
FP voltage sensors in mammalian cells. It is clear from Fig. 3 that
we have not exhaustively explored this possibility in the Shaker
potassium channel. Furthermore, other kinds of split–can FPs and
other oligomeric voltage sensor proteins could be investigated in
an effort to find larger and faster signals.

Acknowledgement

This project is supported by NIH grants U24NS057631, R01DC002529, and NINDS grant R21NS054270.

References

